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Theoretical determination of the voltage-current characteristics of a Langmuir probe 
in a dense plasma has proven to be quite a complex problem. It has been successfully 
solved only for a spherical probe in a nonmoving plasma [i]. Numerical calculations in [I] 
yielded voltage-current characteristics over a wide range of both the probe potential and the 
ratio ~ = %D/R, where %D is the Debye radius and E is the probe radius. An approximate, 
asymptotic solution has aiso been achieved for ~ ~ 1 and moderate probe potential [2]. 

Theoretical analysis of the cylindrical probe is more complex. There are two approaches 
to the problem. In the first, a finite-length probe is considered to be a section of an in- 
finitely long probe. Here the solution for a nonmoving plasma, analogous to those of [i, 2], 
cannot be obtained because it is impossible to satisfy the boundary conditions at infinity. 
In the second approach, the cylindrical probe is approximated by an ellipsoid of revolution. 
This approach was applied to a nonmoving plasma in, for instance, [3], but in that work only 
the saturation current was obtained due to the complexity of the problem. 

The saturation current method [4] is presently the most commonly used approximate method 
for moving plasmas, where determination of the voltage-current characteristics is more diffi- 
cult. It allows derivation of practical relations for diagnostics of various plasma flows. 
An important regime of plasma motion is low Reynolds number flow, seen, for example, in probe 
measurements of laboratory flames. The ion saturation current was obtained in [5] in a 
slowly moving plasma with electrical Reynolds number Re e ~ i, for a cylindrical probe approx- 
imated by an ellipsoid of revolution. The saturation current at a section of an infinitely 
long cylindrical probe was calculated in [6] over the range 1 ~ Re a ~ 15. 

To determine the charged-particle density from experimentally obtained ion saturation 
current characteristics, the question arises of how to select the current characteristic for 
which the current is equal to the theoretical saturation current. In the present work, fol- 
lowing [2], we determine the voltage-current characteristics of a cylindrical probe in a 
plasma with Re e ~ i. This allows the question to be answered not only for Re e ~ 1, but 
(approximately) also for Re e ~ i, typical of probe measurements in flames. 

i. Consider a collisional plasma flow near an infinitely long cylindrical conductor 
(probe) whose axis of symmetry is perpendicular to the velocity U~ of the incident flow. 
The flow takes place with Re e ~ I. The plasma consists of neutral particles, positively 
charged ions, and negatively charged particles (electrons or ions); the neutral density is 
much greater than that of the charged particles, so that the plasma is weakly ionized. The 
charged-particle density is such that ~ ~ i. The ion and neutral temperatures are assumed 
equal and constant throughout the flowfield. When negative particle transport is carried out 
by electrons, the temperature T_ of negatively charged particles may differ from the positive- 
charge temperature T+. However, we assume that the ratio ~ ~ T+/T_ remains constant. Chemi- 
cal reactions in the flow are considered to be frozen. 

Negative ions are brought into consideration here because of their presence in combus- 
tion-formed plasmas [7], where under certain conditions they play a substantial role [8]. 
Two limiting cases are considered below, in which negative charge is transported only by 
electrons or only by ions. 

Under the present assumptions, plasma probe operation is described by the following 
equations [9], in dimensionless form: 

zRee(uVn+)--V(~Vn+--n+V~)=O; (1.1) 
~eo(uvn_)  - -  V(Vn_ + n_v~)  = O; ( 1 . 2 )  
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~2v~q, = n+ - -  n_. ( 1 . 3 )  

Here Re e = U~R/D+; u is the neutral gas velocity nondimensionalized by the incident flow 
velocity; n+ and n_ are the positive and negative charged-particle densities, nondimensional- 
ized by the density of the incident flow; @ is the dimensionless potential obtained by normal- 
izing the dimensional potential ~ : ~= --e~/kT_ (here e is the electron charge and k is Boltz- 
mann's constant); and 8 = D+/D_ is the ratio of the positive and negative charged-particle 
diffusion coefficients. When the negative particles are only electrons, $ ~ I, and when only 
ions, $ is of order unity (we will set $ = 1). 

We will take the veiocity field of the neutral gas to be given; because of the assumed 
weak ionization, it does not depend on the presence of charged species. The boundary condi- 
tions for (1.1)-(1.3) are as follows: at the probe surface (r = i), 

n+ = n_ =0. ~l~ =~p ; (1.4) 

where ,p is prescribed; and far from the surface (r § ~), 

n + ~ l ,  n_-~-l, ~-+0. (1 .5)  

If we neglect the convective terms in (i.I) and (1.2) because of the low Ree, transform 
to polar coordinates (r, 8), and do not consider the e-dependence of the desired functions, 
then (i.I) and (1.2) may be integrated: 

dn+ d~ ~I~ 
z - - ~ - ; - - -  n+-d-7-=-7-z; (1.6) 

dn_ d ~  I (1.7) 
dr + n_ dr -- r 

where the constants of integration I+ and I_ represent the dimensionless currents of positive 
and negative charged particles onto the probe. Equations (1.6) and (1.7) are exact for a 
nonmoving plasma (Re e = 0). 

It is well known that for ~ ~ i, it follows from (1.3) that throughout the region of 
space outside the thin space charge layer adjacent to the probe surface, the plasma is quasi- 
neutral (n+ = n_ = n). Adding (1.6) to (1.7) and integrating, the charge density in the 
quasineutral region becomes 

xI+ + r _ l n  r (1 .8)  n = A +  t +T 

where A is a constant of integration. 

Even if one of the currents I+ or I_ differs from zero, it is clear from (1.8) that as 
r + ~ the density n grows without limit. The boundary condition (1.5) thus cannot be satis- 
fied. Therefore, no solution of (1.1)-(1.5) exists for Re e = 0, although one can be found 
for Re e ~ i. 

2. The given problem is similar to that of two-dimensional flow of an unbounded fluid 
over a cylinder for low Reynolds number [i0]. Even for very small Ree, the convective terms 
of (i.I) and (1.2) cannot be fully neglected. They may be neglected close to the probe, but 
they must be retained at large distances where, irrespective of the magnitude of Re e, the 
convective terms become of the same order as the diffusive terms. 

The solution (1.8) is approximately valid in the quasineutral region near the probe, and 
is the primary term in the interior asymptotic expansion of the charged particle density in 
Re e. We now obtain a solution which is valid far from the probe. 

Su~ing (i.i) and (1.2) and using quasineutrality, 

V2n-- 2•  O, (2 .1 )  

where • ~(~+ ~)Red2(l + z). 

Looking at (2.1), it is easy to see that the condition Re e ( 1 in the problem statement 
may be replaced by Re e ( (I + T)/(T + 6). The second term of (2.1) is then negligibly close 
to the probe. The conditions are identical in the two limiting cases of negatively charged part- 
ticles being ions only (6 = I) and electrons only (6 (i), but in the second case, the given 
theoretical analysis is applied for somewhat higher values of Re e than in the first. 

Yar from the probe, the second terms of (2.1) cannot be neglected; moreover, the flow velocity 
is close to the undisturbed value: u r = cos 8 and u 0 = --sin 8, where u r and u o are the velocity 
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components. The solution of (2.1) which satisfies condition (1.5) is 

n = l @ exp (• cos 0) ~ B~K~ (• cos m O. (2.2) 
nl~ 0 

Here K m is the m-th order modified Bessel function of the second kind, and B m are constants 

of integration. 

For small values of ~ at a fixed distance r, taking the first term of the series expan- 
sion of K0(• we obtain the first term of the interior expansion of the exterior solution: 

n =  I - - B o ( g  § In(• ) ( 2 . 3 )  

where  C = 0 . 5 7 7 2 . . .  i s  t h e  E u l e r  c o n s t a n t .  The c o n s t a n t s  B I ,  B 2 , . . .  a r e  s e t  e q u a l  t o  z e r o  
so that the solution obtained using (2.3) does not depend on the angle 0 and may be asympto- 
tically joined with the interior solution given by (1.8). 

In accordance with the principle of asymptotic joining [i0], the constants A and B 0 in 
(1.8) and (2.3) take the form 

�9 I+ + I_ ( "_2!1 Bo - ~I ~ I- r_ A =  I ~ 1 + ~  C +  In 2 , '  I - (T  

and the quasineutral density near the probe is given by the expression 

z[+ 1-I  (~ z ft. n = l - b  ~_TT- /c  + ln-6- -bln 
- / (2.4) 

From (2.4), setting n = 0 at r = ! and I+ or I_ to zero, we obtain for the saturation 
currents (see [5]) 

_ ' = TI~. ( 2 . 5 )  I~  = (i + 1/~)/(CTIn(• ZL 

Integrating (1.6), subject to (2.4), the primary term of the interior asymptotic expan- 
sion of the potential in the quasineutral region is 

z(f+--f_) [ zI+@I / , • , )] 
@= ~ I + + I  in t +  i ~ - v - [ C @  ~ n - f f - ~ i n r  + q .  ( 2 . 6 )  

The c o n s t a n t  c a must  be d e t e r m i n e d  by j o i n i n g  t h e  p o t e n t i a l  o b t a i n e d  f rom ( 2 . 6 )  w i t h  
t h e  s o l u t i o n  f o r  t h e  p o t e n t i a l  in  t h e  e x t e r i o r  r e g i o n .  We show t h a t  cz = 0. M u l t i p l y i n g  
( 1 . 1 )  by ~ and ( 1 . 2 )  by v, and s u b t r a c t i n g  one f rom t h e  o t h e r ,  we have  

v [ ( }  + , ) n V ~  + T ( t  - -  ~)Vnl = 0, ( 2 . 7 )  

which is valid through the quasineutral region and for any Re e. The solution of (2.7) is 

�9 ( i - -~ ) ln  n + %, ( 2 . 8 )  

v ( n v ~ )  = 0 
( 2 . 9 )  

where 41 satisfies 

and ~l § 0 as r § ~. 

Let us find the solution of (2.9) in the interior region. Taking into consideration 
that the possibility of asymptotic joining of the potential component ~i in the interior re- 
gion cannot depend on the angle 0, and using (2.4), we have 

! ~ !  In[  ~I+ §  • )] % = t i f f+  + I _  i ~ i + ~  C + ! n - ~ - +  In r ( 2 . 1 0 )  

where  c 2 i s  a c o n s t a n t  o f  i n t e g r a t i o n .  

Because (2.7) is valid throughout the quasineutral region, Eq. (2.8), in which the den- 
sity n is determined from (2.4) while 91 is given by (2.10), may be considered as the first 
term of the exterior asymptotic expansion of the potential in the interior region. In ac- 
cordance with the principle of asymptotic joining, in (2.10), c z = -~(BI+ - I_)/(T + $), and 
in (2.6), c I = 0. 

Note that a similar problem was considered in [12]. The difference from the present 
work is that in [12], a conventional reference electrode was used. The reference electrode 
was a large-radius cylinder, penetrable by the plasma, at which the potential was zero. 
The resulting computed voltage-current characteristics depended on the distance between the 
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reference electrode and the probe surface. However, removal of the electrode to infinity 
leads in [12] to an infinite probe potential. Clearly, in [12], an erroneous value of c I 
was assumed in (2.6). 

3. Let us make the substitution $ = inr. Equation (2.6) shows that as ~ § ~, $ § ~s, 
where 

L = - - ( I  + -c) / (z l+  + I_) - -  in (•  - -  C. 

Consequently, the quasineutral solutions (2.4) and (2.6) are valid only for g > gs" To 
analyze the space charge layer for $ < Ss, we make use of the method suggested in [2]. 

During E = d~/d$, Eqs. (1.3), (1.6), and (1.7) may be combined into one equation for 
E. Making the transformation 

where  a = [ ( ~ I +  + I _ ) e x p ( 2 $ s ) / ~ ]  z / s ,  and n e g l e c t i n g  t e r m s  o f  o r d e r  ~ 2 / 3 ,  we a r r i v e  a t  an 
e q u a t i o n  f o r  F, which  may be i n t e g r a t e d  t o  o b t a i n  t h e  e q u a t i o n  f o r  t h e  s p a c e  c h a r g e  l a y e r  [ 2 ] :  

F "  = (t/-c - -  t)FF' + (t/2-c)F a + ~ F + ~  ( 3 . 1 )  

(>, = ~( i+  -- 7_) 1 (rI+ + I_)). 

The solution of (3.1) must approach the quasineutral solution (2.6) as ~ § Using 
the new variables, this takes the form 

F -~ --~/~ as ~ -~ ~. (3.2) 

At the probe surface [2], 
t 

ffp = 0 for ~p = - -  F.~/2r,, (3.3) 
where the subscript p denotes the values of a variable at the surface. 

The solution of (3.1)-(3.3) proceeds as follows. For a given value of X, a point !~p, 
Fp) on the probe surface is selected, such that integration using (2.3) also satisfies (3.2). 
When the value of ~p has been found, I+ and I_ may be determined using the relation ~p = 
-aa-2/a$ s and the expression for I. The probe potential is then calculated from 

~v = if F d~ q- ~ (~,), 
~p 

where ~, is the point at which the integration is joined with the quasineutral solution, 
and the potential ~(~,) is obtained from (2.6) for the quasineutral region. 

The solution of (3.1) was performed numerically by converting it to a system of first- 
order differential equations and then to difference equations according to [13]. For various 
values of X, the corresponding values of ~p were obtained in [2] such that condition (3.2) 
was satisfied. However, in the present work, the values given in [2] are used only as guide- 
lines. 

Depending on ~p, we can identify two forms of the integral curves. If the magnitude 
of ~p is somewhat smaller than that which satisfies (3.2), then the integral curve approaches 
the curve describing the quasineutral solution, and later intersects it. If somewhat larger, 
then the difference between the two solutions gradually decreases in magnitude, attains a 
minimum, and then begins to increase. We may achieve an increasingly accurate representation 
of ~p so that the minimum does not exceed a small quantity (10 -4 ) specified beforehand. In 
that case we regard the value of ~p to be known, and the value at the minimum is ~,. 

The value of ~p is searched for during computation. The resulting values, for given X, 
obtained here are rather lower in magnitude than the corresponding data in [2]. This is 
apparently due to the more up-to-date computational method used here. 

Note that the method developed in [2] allows the characteristics to be obtained only 
for moderate values of the probe potential. For high probe potentials, the space charge 
layer has a complex structure; this case requires special attention [14]. 

4. The calculated voltage-current characteristics are shown in Figs. 1-3. For T = i, 
they are symmetrical with respect to the ordinate (Figs. i, 2). The saturation current 
levels are shown by dashed curves. In Fig. 3, Re e = 0.2 and �9 = 0.5. 
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It may be seen from the figures that when the ion current attains saturation (I_ § 0), 
its value is extremely close to the theoretical value (2.5) only for sufficiently small 
(a = 10-3). Ion-current saturation then becomes independent of T for a potential ~p = I0o 
For large ~ (for example, for ~ = 0.i) the probe current, upon saturation, exceeds the theo- 
retical value by about 25%. The value ~ = 0.i occurs quite often in probe measurements~ 
Consequently, use of the theoretical value of the saturation current to determine the den- 
sity, as in [6], can lead to overestimation of the density due to the finite ~. 

Note that the values Re e = 0.2 and 0.4, given in Figs. 1 and 2, corresponding to the 
case in which transport of negative charge is carried out by electrons. If the negative 
particles are ions, then Re e = 0.i and 0.2 (Figs. 1 and 2). Thus, for a given value of Ree, 
the dimensionless probe current in the negative-ion case increases. Comparing Figs~ 1 and 2, 
we may estimate that the increase in ion current due to the presence of plasma negative ions 
is about 30%. 

5. Compare the voltage-current characteristics obtained with those of a cylindrical 
probe, 0.5 mm in diameter, taken in a sodium-seeded air-acetylene flame (Fig. 4). Because 
Ree, considered in the previous sections, is difficult to determine experimentally, the com- 
parison is only qualitative. The gas flow velocity in the flame was 4.4 • 0.5 m/sec, the 
temperature was 2370 • i0 K, and the ion diffusion coefficient was D+ = 5.2 cm2/sec [15]. 
From these data, Re e = 2.1. 

In terms of the dimensionless charged-particle currents, the dimensional probe currents 

Ji are 

]• = 2~eN~D•177 ( 5 . 1 )  

where  N~ i s  t h e  c h a r g e  d e n s i t y  f a r  f rom t h e  p r o b e  and L i s  t h e  p r o b e  l e n g t h .  The p r o b e  po -  
t e n t i a l  i n  F i g .  4 i s  g i v e n  r e l a t i v e  t o  t h a t  o f  t h e  b u r n e r ,  which  s e r v e d  as  t h e  r e f e r e n c e  
e l e c t r o d e .  

Examination of Fig. 4 shows that the ion current saturates at about ~ = -0.5 V and the 
electron current at ~ = 2 V. For comparison with the theoretical results, we must determine and 
nondimensionalize the corresponding values of the potentials relative to the plasma potential. 

The plasma potential may be estimated as follows. From Figs. 1 and 2, for T = i, when 
the probe potential is equal to the plasma potential ~p = 0, the dimensionless positive and 
negative currents are equal and constitute half of the saturation currents. The saturation 
currents themselves, as follows from (5.1), vary with the corresponding diffusion coeffi- 
cients. From this, we find that the total dimensional current J0 at the plasma potential 
is given in terms of the ion saturation current J~ by 

4 = o , s J ~  (~ - I/~) 

Using the data of [16], we may estimate that for T = 2370 K in an air-acetylene flame, the 
electron diffusion coefficient is D_ = 240 cm2/sec. Thus, the electron saturation current 
should exceed the ion current by a factor of about 46. However, as seen in Fig. 4, the actual 
excess is only a factor of 7. 

The ratio of electrical to ion saturation current decreases for T < i. Because the tem- 
perature at the probe surface is always lower than that of the undisturbed flame, it is pos- 
sible that the electron temperature differs from that of the much heavier positive ions at the 
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probe surface. The current ratio also decreases under the assumption that negative charge 
is carried partly by ions, whose diffusion coefficient is considerably lower than that of 
electrons. Previous work [8] has shown that the fraction of negative ions may be substantial 
at colder probe surfaces. 

Based on Fig. 4, taking an effective value of ~ = 0.15 and assuming that the ion current 
at -0.5 V corresponds to the theoretical saturation current (neglecting the effect of finite 
a), we find that at the plasma potential the probe current is 1.7 uA while the plasma poten- 
tial is about 0.5 V. The dimensionless probe potentials at which the currents saturate are 
~p = 5 for ions and ~p = -7.5 for electrons, somewhat lower than given in Sec. 4. 

The results of this work may be useful in calculating voltage-current characteristics 
of a cylindrical probe for Re e - i. 
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